Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.058
Filtrar
1.
BMC Cardiovasc Disord ; 24(1): 211, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627621

RESUMO

BACKGROUND: C-reactive protein (CRP) is an acute inflammatory protein detected in obese patients with metabolic syndrome. Moreover, increased CRP levels have been linked with atherosclerotic disease, congestive heart failure, and ischemic heart disease, suggesting that it is not only a biomarker but also plays an active role in the pathophysiology of cardiovascular diseases. Since endothelial dysfunction plays an essential role in various cardiovascular pathologies and is characterized by increased expression of cell adhesion molecules and inflammatory markers, we aimed to detect specific markers of endothelial dysfunction, inflammation, and oxidative stress in spontaneously hypertensive rats (SHR) expressing human CRP. This model is genetically predisposed to the development of the metabolic syndrome. METHODS: Transgenic SHR male rats (SHR-CRP) and non-transgenic SHR (SHR) at the age of 8 months were used. Metabolic profile (including serum and tissue triglyceride (TAG), serum insulin concentrations, insulin-stimulated incorporation of glucose, and serum non-esterified fatty acids (NEFA) levels) was measured. In addition, human serum CRP, MCP-1 (monocyte chemoattractant protein-1), and adiponectin were evaluated by means of ELISA, histological analysis was used to study morphological changes in the aorta, and western blot analysis of aortic tissue was performed to detect expression of endothelial, inflammatory, and oxidative stress markers. RESULTS: The presence of human CRP was associated with significantly decreased insulin-stimulated glycogenesis in skeletal muscle, increased muscle and hepatic accumulation of TAG and decreased plasmatic cGMP concentrations, reduced adiponectin levels, and increased monocyte chemoattractant protein-1 (MCP-1) levels in the blood, suggesting pro-inflammatory and presence of multiple features of metabolic syndrome in SHR-CRP animals. Histological analysis of aortic sections did not reveal any visible morphological changes in animals from both SHR and SHR-CRP rats. Western blot analysis of the expression of proteins related to the proper function of endothelium demonstrated significant differences in the expression of p-eNOS/eNOS in the aorta, although endoglin (ENG) protein expression remained unaffected. In addition, the presence of human CRP in SHR in this study did not affect the expression of inflammatory markers, namely p-NFkB, P-selectin, and COX2 in the aorta. On the other hand, biomarkers related to oxidative stress, such as HO-1 and SOD3, were significantly changed, indicating the induction of oxidative stress. CONCLUSIONS: Our findings demonstrate that CRP alone cannot fully induce the expression of endothelial dysfunction biomarkers, suggesting other risk factors of cardiovascular disorders are necessary to be involved to induce endothelial dysfunction with CRP.


Assuntos
Hipertensão , Insulinas , Síndrome Metabólica , Animais , Humanos , Masculino , Ratos , Adiponectina , Aorta , Biomarcadores/metabolismo , Proteína C-Reativa/metabolismo , Quimiocina CCL2 , Inflamação , Insulinas/metabolismo , Síndrome Metabólica/diagnóstico , Síndrome Metabólica/genética , Estresse Oxidativo , Ratos Endogâmicos SHR
2.
Transpl Int ; 37: 12556, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650846

RESUMO

Macrophages contribute to post-transplant lung rejection. Disulfiram (DSF), an anti-alcoholic drug, has an anti-inflammatory effect and regulates macrophage chemotactic activity. Here, we investigated DSF efficacy in suppressing acute rejection post-lung transplantation. Male Lewis rats (280-300 g) received orthotopic left lung transplants from Fisher 344 rats (minor histocompatibility antigen-mismatched transplantation). DSF (0.75 mg/h) monotherapy or co-solvent only (50% hydroxypropyl-ß-cyclodextrin) as control was subcutaneously administered for 7 days (n = 10/group). No post-transplant immunosuppressant was administered. Grades of acute rejection, infiltration of immune cells positive for CD68, CD3, or CD79a, and gene expression of monocyte chemoattractant protein and pro-inflammatory cytokines in the grafts were assessed 7 days post-transplantation. The DSF-treated group had significantly milder lymphocytic bronchiolitis than the control group. The infiltration levels of CD68+ or CD3+ cells to the peribronchial area were significantly lower in the DSF than in the control groups. The normalized expression of chemokine ligand 2 and interleukin-6 mRNA in allografts was lower in the DSF than in the control groups. Validation assay revealed interleukin-6 expression to be significantly lower in the DSF than in the control groups. DSF can alleviate acute rejection post-lung transplantation by reducing macrophage accumulation around peripheral bronchi and suppressing pro-inflammatory cytokine expression.


Assuntos
Dissulfiram , Rejeição de Enxerto , Transplante de Pulmão , Macrófagos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Animais , Transplante de Pulmão/efeitos adversos , Rejeição de Enxerto/prevenção & controle , Rejeição de Enxerto/imunologia , Masculino , Dissulfiram/farmacologia , Dissulfiram/uso terapêutico , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aloenxertos , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Quimiocina CCL2/metabolismo , Pulmão/patologia , Pulmão/efeitos dos fármacos
3.
Front Cell Infect Microbiol ; 14: 1336492, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510961

RESUMO

Human papillomavirus type 8 (HPV8), a cutaneous genus beta HPV type, has co-carcinogenic potential at sun-exposed sites in patients suffering from the inherited skin disease epidermodysplasia verruciformis (EV). We had previously shown that Langerhans cells responsible for epithelial immunosurveillance were strongly reduced at infected sites and that the HPV8 E7 protein interferes with the CCAAT/enhancer-binding protein (C/EBP)ß to suppress the Langerhans cell chemokine CCL20. At the same time, however, we observed that EV lesions are heavily infiltrated with inflammatory immune cells, which is similar to the situation in HPV8 E6 transgenic mice. To identify critical inflammatory factors, we used a broad multiplex approach and found that the monocyte attracting chemokine CCL2 was significantly and strongly induced by HPV8 E6 but not E7-expressing HaCaT cells, which were used as a model for UV-damaged skin keratinocytes. Conditioned media from HPV8 E6-expressing keratinocytes enhanced CCL2-receptor (CCR2)-dependent monocyte recruitment in vitro, and macrophages predominated in the stroma but were also detected in the epidermal compartment of EV lesions in vivo. CCL2 induction by HPV8 E6 was even stronger than stimulation with the proinflammatory cytokine TNF-α, and both HPV8 E6 and TNF-α resulted in substantial suppression of the transcription factor C/EBPα. Using RNAi-mediated knockdown and overexpression approaches, we demonstrated a mechanistic role of the recently identified C/EBPα/miR-203/p63 pathway for HPV8 E6-mediated CCL2 induction at protein and transcriptional levels. Epithelial co-expression of p63 and CCL2 was confirmed in HPV8 E6-expressing organotypic air-liquid interface cultures and in lesional EV epidermis in vivo. In summary, our data demonstrate that HPV8 oncoproteins actively deregulate epidermal immune homeostasis through modulation of C/EBP factor-dependent pathways. While HPV8 E7 suppresses immunosurveillance required for viral persistence, the present study provides evidence that E6 involves the stemness-promoting factor p63 to support an inflammatory microenvironment that may fuel carcinogenesis in EV lesions.


Assuntos
Quimiocina CCL2 , Epidermodisplasia Verruciforme , MicroRNAs , Animais , Humanos , Camundongos , Quimiocina CCL2/metabolismo , Epidermodisplasia Verruciforme/metabolismo , Papillomavirus Humano , Queratinócitos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473995

RESUMO

Vascular endothelial growth factor (VEGF) induces monocyte chemoattractant protein-1 (MCP-1) and plays an important role in vascular inflammation and atherosclerosis. We investigated the mechanisms of VEGF-induced MCP-1 expression and the effects of eicosapentaenoic acid (EPA) in human umbilical vein endothelial cells (HUVECs). Real-time reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that VEGF enhanced MCP-1 gene expression and protein secretion in HUVECs. Western immunoblot analysis revealed that VEGF induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and inhibitor of nuclear factor (NF)-κB (IκB). Treatment with pharmacological inhibitors of p38 MAPK (SB203580) or NF-κB (BAY11-7085) significantly suppressed VEGF-induced MCP-1 in HUVECs. EPA inhibited VEGF-induced MCP-1 mRNA, protein secretion, phosphorylation of p38 MAPK, and the translocation of phospho-p65 to the nucleus. Additionally, VEGF also stimulated gene expressions of interleukin (IL)-6 and IL-8, which were suppressed by SB203580, BAY11-7085, and EPA. The present study has demonstrated that VEGF-induced activation of MCP-1, IL-6, and IL-8 involves the p38 MAPK and NF-κB signaling pathways and that EPA inhibits VEGF-induced MCP-1, IL-6, and IL-8 via suppressing these signaling pathways. This study supports EPA as a beneficial anti-inflammatory and anti-atherogenic drug to reduce the VEGF-induced activation of proinflammatory cytokine and chemokines.


Assuntos
Quimiocina CCL2 , Interleucina-6 , Humanos , Quimiocina CCL2/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ácido Eicosapentaenoico/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
5.
Stem Cell Reports ; 19(3): 414-425, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38428413

RESUMO

Myeloid cells, which originate from hematopoietic stem/progenitor cells (HSPCs), play a crucial role in mitigating infections. This study aimed to explore the impact of mesenchymal stem/stromal cells (MSCs) on the differentiation of HSPCs and progenitors through the C-C motif chemokine CCL2/CCR2 signaling pathway. Murine MSCs, identified as PDGFRα+Sca-1+ cells (PαS cells), were found to secrete CCL2, particularly in response to lipopolysaccharide stimulation. MSC-secreted CCL2 promoted the differentiation of granulocyte/macrophage progenitors into the myeloid lineage. MSC-derived CCL2 plays an important role in the early phase of myeloid cell differentiation in vivo. Single-cell RNA sequencing analysis confirmed that CCL2-mediated cell fate determination was also observed in human bone marrow cells. These findings provide valuable insights for investigating the in vivo effects of MSC transplantation.


Assuntos
Quimiocina CCL2 , Células-Tronco Mesenquimais , Animais , Humanos , Camundongos , Diferenciação Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo , Transdução de Sinais
6.
J Virol ; 98(2): e0165223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299866

RESUMO

CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1ß+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.


Assuntos
Infecções por HIV , HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Replicação Viral , Animais , Feminino , Masculino , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Envelhecimento , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Quimiocina CCL2/imunologia , Quimiocina CCL2/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/patologia , Progressão da Doença , HIV/classificação , HIV/crescimento & desenvolvimento , HIV/patogenicidade , HIV/fisiologia , Infecções por HIV/imunologia , Infecções por HIV/patologia , Infecções por HIV/virologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucinas/imunologia , Interleucinas/metabolismo , Intestinos/virologia , Tecido Linfoide/virologia , Macaca mulatta/imunologia , Macaca mulatta/metabolismo , Inoculações Seriadas , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/patologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Imunodeficiência Símia/fisiologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral , Tropismo Viral , Virulência , Receptores CCR5/metabolismo
7.
J Cell Biochem ; 125(4): e30535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38348687

RESUMO

Strong evidence has indicated that upregulation of chemokine (CC motif) ligand-2 (CCL2) expression and the presence of an inflammatory tumor microenvironment significantly contribute to the migratory and invasive properties of oral squamous cell carcinoma, specifically oral tongue squamous cell carcinoma (OTSCC). However, the precise epigenetic mechanism responsible for enhanced CCL2 expression in response to the inflammatory mediator tumor necrosis factor alpha (TNF-α) in OTSCC remains inadequately elucidated. We have demonstrated that the production of CCL2 can be induced by TNF-α, and this induction is mediated by the chromatin remodel protein BRG1. Through the use of a chromatin immunoprecipitation (ChIP) assay, we have found that BRG1 was involved in the recruitment of acetylated histones H3 and H4 at the CCL2 promoter, thereby activating TNF-α-induced CCL2 transcription. Furthermore, we have observed that recruitment of NF-κB p65 to the CCL2 promoter was increased following BRG1 overexpression and decreased after BRG1 knockdown in OTSCC cells. Our Re-ChIP assay has shown that BRG1 knockdown completely inhibits the recruitment of both acetylated histone H3 or H4 and NF-κB to the CCL2 promoter. In summary, the findings of our study demonstrate that BRG1 plays a significant role in mediating the production of CCL2 in OTSCC cells in response to TNF-α stimulation. This process involves the cooperative action of acetylated histone and NF-κB recruitment to the CCL2 promoter site. Our data suggest that BRG1 serves as a critical epigenetic mediator in the regulation of TNF-α-induced CCL2 transcription in OTSCC cells.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias da Língua , Fator de Necrose Tumoral alfa , Humanos , Carcinoma de Células Escamosas/genética , Quimiocina CCL2/metabolismo , Epigênese Genética , Histonas/metabolismo , Neoplasias Bucais , NF-kappa B/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Língua/genética , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo
8.
Diabetes ; 73(5): 713-727, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38320300

RESUMO

Heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) is involved in lipid and glucose metabolism via mRNA processing. However, whether and how HNRNPA1 alters adipocyte function in obesity remain obscure. Here, we found that the obese state downregulated HNRNPA1 expression in white adipose tissue (WAT). The depletion of adipocyte HNRNPA1 promoted markedly increased macrophage infiltration and expression of proinflammatory and fibrosis genes in WAT of obese mice, eventually leading to exacerbated insulin sensitivity, glucose tolerance, and hepatic steatosis. Mechanistically, HNRNPA1 interacted with Ccl2 and regulated its mRNA stability. Intraperitoneal injection of CCL2-CCR2 signaling antagonist improved adipose tissue inflammation and systemic glucose homeostasis. Furthermore, HNRNPA1 expression in human WAT was negatively correlated with BMI, fat percentage, and subcutaneous fat area. Among individuals with 1-year metabolic surgery follow-up, HNRNPA1 expression was positively related to percentage of total weight loss. These findings identify adipocyte HNRNPA1 as a link between adipose tissue inflammation and systemic metabolic homeostasis, which might be a promising therapeutic target for obesity-related disorders.


Assuntos
Resistência à Insulina , Obesidade , Humanos , Camundongos , Animais , Regulação para Cima , Ribonucleoproteína Nuclear Heterogênea A1/genética , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Inflamação/genética , Inflamação/metabolismo , Resistência à Insulina/genética , Glucose/metabolismo , Camundongos Endogâmicos C57BL , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo
9.
Oncogene ; 43(13): 944-961, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351345

RESUMO

Metastasis causes most cancer-related deaths, and the role and mechanism of periostin (POSTN) in the metastasis of hepatocellular carcinoma (HCC) remain undiscovered. In this study, DEN and HTVi HCC models were performed in hepatic-specific Postn ablation and Postn knock-in mouse to reveal the role of POSTN in HCC metastasis. Furthermore, POSTN was positively correlated with circulating EPCs level and promoted EPC mobilization and tumour infiltration. POSTN also mediated the crosstalk between HCC and EPCs, which promoted metastasis ability and upregulated CD36 expression in HCC through indirect crosstalk. Chemokine arrays further revealed that hepatic-derived POSTN induced elevated CCL2 expression and secretion in EPCs, and CCL2 promoted prometastatic traits in HCC. Mechanistic studies showed that POSTN upregulated CCL2 expression in EPCs via the αvß3/ILK/NF-κB pathway. CCL2 further induced CD36 expression via the CCR2/STAT3 pathway by directly binding to the promoter region of CD36. Finally, CD36 was verified to have a prometastatic role in vitro and to be correlated with POSTN expression, metastasis and recurrence in HCC in clinical samples. Our findings revealed that crosstalk between HCC and EPCs is mediated by periostin/CCL2/CD36 signalling which promotes HCC metastasis and emphasizes a potential therapeutic strategy for preventing HCC metastasis.


Assuntos
Antígenos CD36 , Carcinoma Hepatocelular , Quimiocina CCL2 , Células Progenitoras Endoteliais , Neoplasias Hepáticas , 60491 , Animais , Camundongos , Carcinoma Hepatocelular/patologia , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Neoplasias Hepáticas/patologia , Transdução de Sinais/genética , Microambiente Tumoral/genética , Quimiocina CCL2/metabolismo , Antígenos CD36/metabolismo
10.
Sci Rep ; 14(1): 3211, 2024 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332001

RESUMO

Type 2 diabetic kidney disease (T2DKD) is a common microvascular complication of type 2 diabetes mellitus (T2DM), and its incidence is significantly increasing. Microinflammation plays an important role in the development of T2DKD. Based on this, this study investigated the value of inflammatory markers including neutrophil-lymphocyte ratio (NLR), high-sensitivity C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1) in the prediction of T2DKD. This was a cross-sectional survey study. A total of 90 patients with T2DM, who were hospitalized in the nephrology and endocrinology departments of the First Teaching Hospital of Tianjin University of Traditional Chinese Medicine from June 2021 to January 2022, were included and divided into three groups (A1, A2, A3) according to the urinary albumin-to-creatinine ratio (UACR). Observe and compare the basic information, clinical and laboratory data, and the inflammatory markers NLR, hs-CRP, MCP-1. Results revealed that high levels of NLR (OR = 6.562, 95% CI 2.060-20.902, P = 0.001) and MCP-1 (OR = 1.060, 95% CI 1.026-1.095, P < 0.001) were risk factors in the development of T2DKD. Receiver operating characteristic curve analysis showed that the area under curve of NLR and MCP-1 in diagnosing T2DKD were 0.760 (95% CI 0.6577-0.863, P < 0.001) and 0.862 (95% CI 0.7787-0.937, P < 0.001). Therefore, the inflammatory markers NLR and MCP-1 are risk factors affecting the development of T2DKD, which of clinical value may be used as novel markers of T2DKD.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Proteína C-Reativa/análise , Quimiocina CCL2/urina , Estudos Transversais , Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/urina , Linfócitos/química , Neutrófilos/química , Estudos Retrospectivos , Curva ROC
11.
Physiol Rep ; 12(3): e15945, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38328863

RESUMO

Antimicrobial peptides (AMPs) constitute a complex network of 10-100 amino acid sequence molecules widely distributed in nature. While over 300 AMPs have been described in mammals, cathelicidins and defensins remain the most extensively studied. Some publications have explored the role of AMPs in COVID-19, but these findings are preliminary, and in vivo studies are still lacking. In this study, we report the plasma levels of five AMPs (LL-37, α-defensin 1, α-defensin 3, ß-defensin 1, and ß-defensin 3), using the ELISA technique (MyBioSource, San Diego, CA, United States, kits MBS2601339 (beta-defensin 1), MBS2602513 (beta-defensin 3), MBS703879 (alpha-defensin 1), MBS706289 (alpha-defensin 3), MBS7234921 (LL37)), and the measurement of six cytokines (tumor necrosis factor-α, interleukin-1ß, interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1), through the magnetic bead immunoassay Milliplex® and the MAGPIX® System (MilliporeSigma, Darmstadt, Germany, kit HCYTOMAG-60 K (cytokines)), in 15 healthy volunteers, 36 COVID-19 patients without Acute Kidney Injury (AKI) and 17 COVID-19 patients with AKI. We found increased levels of α-defensin 1, α-defensin 3 and ß-defensin 3, in our COVID-19 population, when compared to healthy controls, along with higher levels of interleukin-6, interleukin-10, interferon-γ, and monocyte chemoattractant protein-1. These findings suggest that these AMPs and cytokines may play a crucial role in the systemic inflammatory response and tissue damage characterizing severe COVID-19. The levels of α-defensin 1 and α-defensin 3 were significantly higher in COVID-19 AKI group in comparison to the non-AKI group. Furthermore, IL-10 and the product IL-10 × IL-1B showed excellent performance in discriminating AKI, with AUCs of 0.86 and 0.88, respectively. Among patients with COVID-19, AMPs may play a key role in the inflammation process and disease progression. Additionally, α-defensin 1 and α-defensin 3 may mediate the AKI process in these patients, representing an opportunity for further research and potential therapeutic alternatives in the future.


Assuntos
Injúria Renal Aguda , COVID-19 , alfa-Defensinas , beta-Defensinas , Animais , Humanos , beta-Defensinas/metabolismo , Interleucina-10 , Peptídeos Catiônicos Antimicrobianos/metabolismo , Quimiocina CCL2 , SARS-CoV-2/metabolismo , Peptídeos Antimicrobianos , Interleucina-6 , Interferon gama , Estado Terminal , Citocinas/metabolismo , Biomarcadores , Injúria Renal Aguda/diagnóstico , Mamíferos/metabolismo
12.
Ren Fail ; 46(1): 2313171, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38345000

RESUMO

Acute kidney injury (AKI) is a prevalent and serious condition in the intensive care unit (ICU), associated with significant morbidity and mortality. Septic acute kidney injury (SAKI) contributes substantially to AKI cases in the ICU. However, current diagnostic methods have limitations, necessitating the exploration of novel biomarkers. In this study, we investigated the potential of plasma and urine CCL2 levels as diagnostic markers for AKI and SAKI in 216 ICU patients. Our findings revealed significant differences in plasma (p < 0.01) and urine CCL2 (p < 0.0001) levels between AKI and non-AKI patients in the ICU. Notably, urine CCL2 demonstrated promising predictive value for AKI, exhibiting high specificity and sensitivity (AUC = 0.8976; p < 0.0001). Furthermore, we observed higher urine CCL2 levels in SAKI compared to non-septic AKI (p < 0.001) and urine CCL2 could also differentiate SAKI from non-septic AKI (AUC = 0.7597; p < 0.0001). These results suggest that urine CCL2 levels hold promise as early biomarkers for AKI and SAKI, offering valuable insights for timely intervention and improved management of ICU patients.


Assuntos
Injúria Renal Aguda , Sepse , Humanos , Sepse/diagnóstico , Sepse/complicações , Biomarcadores , Cuidados Críticos , Unidades de Terapia Intensiva , Quimiocina CCL2
13.
J Cell Physiol ; 239(4): e31192, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38284280

RESUMO

Obesity and metabolic diseases, such as insulin resistance, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments, represent formidable global health challenges, bearing considerable implications for both morbidity and mortality rates. It has become increasingly evident that chronic, low-grade inflammation plays a pivotal role in the genesis and advancement of these conditions. The involvement of C-C chemokine ligand 2 (CCL2) and its corresponding receptor, C-C chemokine receptor 2 (CCR2), has been extensively documented in numerous inflammatory maladies. Recent evidence indicates that the CCL2/CCR2 pathway extends beyond immune cell recruitment and inflammation, exerting a notable influence on the genesis and progression of metabolic syndrome. The present review seeks to furnish a comprehensive exposition of the CCL2-CCR2 signaling axis within the context of obesity and metabolic disorders, elucidating its molecular mechanisms, functional roles, and therapeutic implications.


Assuntos
Diabetes Mellitus Tipo 2 , Doenças Metabólicas , Humanos , Receptores de Quimiocinas , Quimiocina CCL2/metabolismo , Ligantes , Quimiocinas , Inflamação , Obesidade , Receptores CCR2/metabolismo
14.
BMC Cancer ; 24(1): 75, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221626

RESUMO

BACKGROUND: Obesity-induced abnormal bone marrow microenvironment is one of the important risk element for bone metastasis in prostate cancer (PCa). The present study aimed to determine whether obesity-induced elevation in palmitic acid (PA), which is the most abundant of the free fatty acids (FFAs), increased CCL2 via the GPRs/KLF7 pathway in bone marrow adipocytes (BMA) to facilitate PCa growth and metastasis. METHODS: We constructed a bone-tumor bearing mouse model with obesity through high-fat diet, and observed the tumor formation ability of PCa cells. In vitro, observe the effect of PA on the expression level of CCL2 in BMA through GPRs/KLF7 signaling pathway. After co-culture of BMA and PCa cells, CCK8 assay and transwell experiment were used to detect the changes in biological behavior of PCa cells stimulated by BMA. RESULTS: The BMA distribution in the bone marrow cavity of BALB/c nude mice fed with the high-fat diet (HFD) was evidently higher than that in the mice fed with the normal diet (ND). Moreover, HFD-induced obesity promoted KLF7/CCL2 expression in BMA and PCa cell growth in the bone marrow cavity of the mice. In the vitro experiment, a conditioned medium with increased CCL2 obtained from the BMA cultured with PA (CM-BMA-PA) was used for culturing the PCa cell lines, which evidently enhanced the proliferation, invasion, and migration ability. KLF7 significantly increased the CCL2 expression and secretion levels in BMA by targeting the promoter region of the CCL2 gene. In addition, GPR40/120 engaged in the PA-induced high KLF7/CCL2 levels in BMA to facilitate the malignant progression of PC-3 cells. CONCLUSIONS: PA-activated GPRs/KLF7/CCL2 pathway in BMA facilitates prostate cancer growth and metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Medula Óssea/patologia , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Nus , Obesidade/patologia , Ácido Palmítico/farmacologia , Neoplasias da Próstata/patologia , Microambiente Tumoral
15.
J Virol ; 98(1): e0110223, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38169294

RESUMO

Mayaro virus (MAYV) is an emerging arbovirus member of the Togaviridae family and Alphavirus genus. MAYV infection causes an acute febrile illness accompanied by persistent polyarthralgia and myalgia. Understanding the mechanisms involved in arthritis caused by alphaviruses is necessary to develop specific therapies. In this work, we investigated the role of the CCL2/CCR2 axis in the pathogenesis of MAYV-induced disease. For this, wild-type (WT) C57BL/6J and CCR2-/- mice were infected with MAYV subcutaneously and evaluated for disease development. MAYV infection induced an acute inflammatory disease in WT mice. The immune response profile was characterized by an increase in the production of inflammatory mediators, such as IL-6, TNF, and CCL2. Higher levels of CCL2 at the local and systemic levels were followed by the significant recruitment of CCR2+ macrophages and a cellular response orchestrated by these cells. CCR2-/- mice showed an increase in CXCL-1 levels, followed by a replacement of the macrophage inflammatory infiltrate by neutrophils. Additionally, the absence of the CCR2 receptor protected mice from bone loss induced by MAYV. Accordingly, the silencing of CCL2 chemokine expression in vivo and the pharmacological blockade of CCR2 promoted a partial improvement in disease. Cell culture data support the mechanism underlying the bone pathology of MAYV, in which MAYV infection promotes a pro-osteoclastogenic microenvironment mediated by CCL2, IL-6, and TNF, which induces the migration and differentiation of osteoclast precursor cells. Overall, these data contribute to the understanding of the pathophysiology of MAYV infection and the identification future of specific therapeutic targets in MAYV-induced disease.IMPORTANCEThis work demonstrates the role of the CCL2/CCR2 axis in MAYV-induced disease. The infection of wild-type (WT) C57BL/6J and CCR2-/- mice was associated with high levels of CCL2, an important chemoattractant involved in the recruitment of macrophages, the main precursor of osteoclasts. In the absence of the CCR2 receptor, there is a mitigation of macrophage migration to the target organs of infection and protection of these mice against bone loss induced by MAYV infection. Much evidence has shown that host immune response factors contribute significantly to the tissue damage associated with alphavirus infections. Thus, this work highlights molecular and cellular targets involved in the pathogenesis of arthritis triggered by MAYV and identifies novel therapeutic possibilities directed to the host inflammatory response unleashed by MAYV.


Assuntos
Infecções por Alphavirus , Artrite , Quimiocina CCL2 , Receptores CCR2 , Animais , Camundongos , Alphavirus , Infecções por Alphavirus/imunologia , Artrite/imunologia , Artrite/virologia , Quimiocina CCL2/imunologia , Interleucina-6/imunologia , Camundongos Endogâmicos C57BL , Receptores CCR2/imunologia , Camundongos Knockout , Masculino , Doenças Ósseas/virologia
16.
Tissue Cell ; 86: 102294, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181585

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic joint inflammation. Fibronectin type III domain-containing protein 4 (FNDC4) is a secretory factor that can regulate inflammatory diseases. However, the role of FNDC4 in RA has not been reported so far. METHODS: The expression of FNDC4 in synovial tissues of RA was analyzed by GEO database (GSE55235 dataset). Then, the expression of FNDC4 in RA fibroblast-like synoviocytes (RA-FLSs) was detected by RT-qPCR and western blot. After constructing FNDC4 overexpression plasmid, cell proliferation and apoptosis were detected. Wound healing and transwell assays were used to detect cell migration and invasion. Then we examined the expression of cytokines related to cell inflammation. Subsequently, the regulatory mechanism of FNDC4 was further discussed. We detected the expression of CCL2 and ERK signaling pathway related proteins downstream of FNDC4. Finally, the mechanism was discussed through the overexpression of FNDC4 and CCL2 and the addition of ERK pathway activator tBHQ. RESULTS: GEO database showed that FNDC4 expression decreased in synovial tissues of RA. FNDC4 expression was also decreased in RA-FLSs. Overexpression of FNDC4 inhibited the proliferation, invasion and migration of RA-FLSs whereas promoted the cellapoptosis. Overexpression of FNDC4 inhibited the release of inflammatory factors in RA-FLSs. The regulatory effect of FNDC4 is achieved by inhibiting the CCL2/ERK signaling pathway. CONCLUSION: FNDC4 reduces inflammation, proliferation, invasion and migration of RA-FLSs in RA by inhibiting CCL2/ERK signaling.


Assuntos
Artrite Reumatoide , Sinoviócitos , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/farmacologia , Fibroblastos/metabolismo , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais/genética , Membrana Sinovial , Sinoviócitos/metabolismo , Fibronectinas/metabolismo
17.
Med Sci Monit ; 30: e942079, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169464

RESUMO

BACKGROUND Previous studies have identified an association between plasma levels of the inflammatory cytokine, monocyte chemoattractant protein-1 (MCP-1), and outcomes for patients with sepsis. This retrospective single-center study assessed the association between plasma levels of MCP-1 and 28-day mortality in 136 patients ≥65 years diagnosed with sepsis between October 2020 and October 2021. MATERIAL AND METHODS The objective was to compare and analyze the parameters in the survival group (n=35) and the 28-day mortality group (n=101), including Sequential Organ Failure Assessment (SOFA), Acute Physiology and Chronic Health Evaluation II (APACHE II), plasma MCP-1, and laboratory test results. Plasma MCP-1 was quantified by cytokine test kit (LKTM014B, R&D). Statistical analysis was carried out in SPSS 26.0 and MedCalc 92.1.0 software. RESULTS The 28-day mortality group exhibited higher levels of SOFA, APACHEII, and plasma MCP-1 (all P<0.001), as well as lower levels of albumin, compared to the survival group (P<0.05). The logistic regression analysis findings indicated that SOFA, APACHEII, plasma MCP-1, and SBP are all independent risk factors for 28-day mortality. The area under the curve for SOFA, APACHEII, MCP-1, MCP-1+ SOFA, and MCP-1+APACHEII were 0.845, 0.744, 0.712, 0.879, and 0.822, respectively. MCP-1+SOFA exhibited higher sensitivity than SOFA alone. Furthermore, the assessment values of plasma MCP-1 combined with SOFA were superior to those of APACHE II or plasma MCP-1 (Z1=2.661, Z2=3.272, both P<0.01). CONCLUSIONS The findings from this study from a single center support those of previous studies that increased plasma levels of MCP-1 are significantly associated with 28-day mortality in patients with sepsis.


Assuntos
Quimiocina CCL2 , Sepse , Idoso , Humanos , Unidades de Terapia Intensiva , Escores de Disfunção Orgânica , Prognóstico , Estudos Retrospectivos , Curva ROC
18.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255988

RESUMO

In primary Sjögren's syndrome (pSS) patients, salivary gland (SG) epithelial cells (SGECs) could be exposed to chronic hyperosmotic stress (HOS), consecutive to their destruction and deregulation, that exacerbates an inflammatory response. The aims of this study were to assess the mechanism accounting for C-C motif chemokine ligand 2 (CCL2) expression in an immortalized human salivary gland epithelial acinar cell line (NS-SV-AC) subjected to HOS, as well as the involvement of CCL2 in pSS. CCL2 mRNA and protein levels were determined via RT-qPCR and ELISA. Reporter plasmids and a promoter pull-down assay were used to identify transcription factors associated with CCL2 mRNA increase. Our data showed that HOS-induced CCL2 mRNA increase was independent of the nuclear factor of activated T-cells 5 (NFAT5) and nuclear factor-kappa B (NFkB) but involved Kruppel-like factor 5 (KLF5). CCL2 protein levels, quantified by enzyme-linked immunosorbent assay (ELISA) in sera samples from pSS patients, correlated with the European Alliance of Associations for Rheumatology's Sjogren's syndrome disease activity index (ESSDAI) score for systemic activity. In addition, CCL2 protein levels were higher in patients with biological activity, cutaneous manifestations, and ESSDAI score superior or equal to five. Our data suggest that chronic HOS could exacerbate pSS disease by contributing to the inflammatory process induced by the expression and secretion of CCL2.


Assuntos
Síndrome de Sjogren , Humanos , Síndrome de Sjogren/genética , Ligantes , Glândulas Salivares , Quimiocinas , Fator V , RNA Mensageiro , Fatores de Transcrição , Quimiocina CCL2/genética
19.
Obes Surg ; 34(2): 610-617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38196045

RESUMO

INTRODUCTION: Bariatric surgery has been the most effective treatment modality for morbid obesity that reduces associated comorbidities and improves quality of life. This study aims at evaluating and comparing the impact of two types of bariatric surgery-laparoscopic sleeve gastrectomy (LSG) and one anastomosis gastric bypass (OAGB)-on renal functions and urinary monocyte chemoattractant protein-1 (MPC-1) levels in morbidly obese patients 3 months after surgery. METHODS: This is a prospective study of 40 morbidly obese patients who underwent bariatric surgery. Two types of bariatric surgery were done-laparoscopic sleeve gastrectomy (LSG) (26 patients) and laparoscopic one anastomosis gastric bypass (OAGB) (14 patients). The outcomes of the two procedures were compared in terms of renal function parameters and the level of urinary MCP-1. RESULTS: There were no statistically significant differences in the mean postoperative urinary MCP-1 (73.53 ± 21.25, 75.43 ± 26.17, P > 0.5), microalbuminuria (8.83 ± 6.26, 10.02 ± 8.6, P > 0.05), urinary creatinine (109.21 ± 43.22, 99.19 ± 48.65, P > 0.05), MCP1/Cr ratio (0.78 ± 0.36, 1.01 ± 0.70, P > 0.05), eGFR (100.32 ± 9.54, 104.39 ± 9.54, P > 0.05) in the cases who had either LSG operation or OAGB operation. CONCLUSION: Bariatric surgery improves all indicators of kidney malfunction and reduces the level of urinary MCP-1. Both laparoscopic sleeve gastrectomy (LSG) and laparoscopic one anastomosis gastric bypass (OAGB) cause similar improvement of the renal function and reduction of urinary MCP-1 level.


Assuntos
Derivação Gástrica , Laparoscopia , Obesidade Mórbida , Humanos , Derivação Gástrica/métodos , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Qualidade de Vida , Quimiocina CCL2 , Resultado do Tratamento , Gastrectomia/métodos , Rim , Estudos Retrospectivos , Laparoscopia/métodos
20.
PLoS Pathog ; 20(1): e1011710, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38206985

RESUMO

Toxoplasma gondii is an obligate intracellular parasite that infects one-third of the world's human population and establishes infection in the brain. Cerebral immune cell infiltration is critical for controlling the parasite, but little is known about the molecular cues guiding immune cells to the brain during infection. Activated astrocytes produce CCL2, a chemokine that mediates inflammatory monocyte recruitment to tissues by binding to the CCR2 receptor. We detected elevated CCL2 production in the brains of C57BL/6J mice by 15 days after T. gondii infection. Utilizing confocal microscopy and intracellular flow cytometry, we identified microglia and brain-infiltrating myeloid cells as the main producers of CCL2 during acute infection, and CCL2 was specifically produced in regions of parasite infection in the brain. In contrast, astrocytes became the dominant CCL2 producer during chronic T. gondii infection. To determine the role of astrocyte-derived CCL2 in mobilizing immune cells to the brain and controlling T. gondii infection, we generated GFAP-Cre x CCL2fl/fl mice, in which astrocytes are deficient in CCL2 production. We observed significantly decreased immune cell recruitment and increased parasite burden in the brain during chronic, but not acute, infection of mice deficient in astrocyte CCL2 production, without an effect on peripheral immune responses. To investigate potential mechanisms explaining the reduced control of T. gondii infection, we analyzed key antimicrobial and immune players in host defense against T. gondii and detected a reduction in iNOS+ myeloid cells, and T. gondii-specific CD4+ T cells in the knockout mice. These data uncover a critical role for astrocyte-derived CCL2 in immune cell recruitment and parasite control in the brain during chronic, but not acute, T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Humanos , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Quimiocina CCL2/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Toxoplasma/metabolismo , Toxoplasmose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...